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Diascalar flux and the rate of fluid mixing 
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We define the rate at which a scalar 6' mixes in a fluid flow in terms of the flux of 6' 
across isoscalar surfaces. This flux $d is purely diffusive and is, in principle, exactly 
known at all times given the scalar field and the coefficient of molecular diffusivity. 
In general, the complex geometry of isoscalar surfaces would appear to make the 
calculation of this flux very difficult. In this paper, we derive an exact expression 
relating the instantaneous diascalar flux to the average squared scalar gradient on 
an isoscalar surface which does not require knowledge of the spatial structure of 
the surface itself. To obtain this result, a time-dependent reference state 6'(t,z,) is 
defined. When the scalar is taken to be density, this reference state is that of minimum 
potential energy. The rate of change of the reference state due to diffusion is shown 
to equal the divergence of the diffusive flux, i.e. (a/az,)&. 

This result provides a mathematical framework that exactly separates diffusive and 
advective scalar transport in incompressible fluid flows. The relationship between 
diffusive and advective transport is discussed in relation to the scalar variance equa- 
tion and the Osborn-Cox model. Estimation of water mass transformation from 
oceanic microstructure profiles and determination of the time-dependent mixing rate 
in numerically simulated flows are discussed. 

1. Introduction 
The rate of mixing is a fundamental property of fluid flows. Mixing influences 

both the horizontal and vertical dispersion of all conserved quantities which in turn 
influences the dynamics of the flow at all scales. Furthermore, the rate at which energy 
is expended in mixing a density-stratified flow can often be a significant fraction of 
the total energy dissipation rate. 

Though mixing is a fundamental process of interest, the rate of mixing is often 
difficult to measure. Part of the difficulty stems from subtle differences between 
various definitions of mixing. Intrinsic to many definitions, however, is the notion 
of a scalar flux. For example, the flux of heat through the fluid is often used to 
quantify the mixing rate in thermally stratified flows. The flux of heat divided by a 
suitably defined mean temperature gradient yields the rate of mixing expressed as a 
diffusivity. Two issues arise immediately: (i) Across what surfaces should the flux be 
determined? (ii) How should the mean gradient be defined? 

The goal of this paper is to clarify these issues and to obtain an unambiguous 
relationship between mixing, scalar flux and the average squared scalar gradient. 

These results bear directly on the estimation of mixing rates, particularly in geo- 
physical flows. Direct measurements of diapycnal mixing rates in oceans and lakes 
are often obtained from profiling 'microstructure' instruments, which measure one or 
more components of the temperature gradient. The interpretation of these data relies 
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on the temperature variance equation and a set of simplifying assumptions known as 
the Osborn-Cox (1972) model (see Gregg 1987). Because the underlying assumptions 
are often difficult to justify, the accuracy of this technique has been questioned by 
several authors, in particular by Davis (1994a,b, 1996). This paper derives an exact 
expression which yields the heat flux across isotherms in terms of average squared 
temperature gradients. The difference between this expression and that derived by 
Osborn-Cox (1972) rests entirely in using the proper definitions for mean temperature 
gradient and heat flux. 

Our results are derived from the following advection-diffusion equation for an 
arbitrary scalar 6: 

where K is the coefficient of molecular diffusivity and V-u = 0. Equation (1) is assumed 
to hold in a volume V with cross-sectional area A. To simplify the presentation, we 
assume that A is constant. The volume V is open in the sense that fluid is permitted 
to enter and leave the domain of analysis. Equation (1) is used extensively to model 
the evolution of temperature and/or Boussinesq density in geophysical flows. In the 
discussion that follows, we will frequently refer to a surface on which the arbitrary 
scalar 6 has a constant value as an isoscalar surface. Similarly, we often use the term 
diascalar for the direction perpendicular to this surface. 

2. Scalar flux 
2.1. Diascalar flux 

To define the rate at which scalar flux occurs, one must first define the surface(s) 
across which the flux is to be measured. A natural choice is to define the flux relative 
to surfaces of constant 6, or isoscalar surfaces. The appropriate flux is then the 
diffusive flux lcV8. Note that the flux has dimensions of [8] m s-l, where [ O ]  denotes 
the dimensions of the scalar 6. A meaningful average flux (bd can be obtained by 
integrating over an isoscalar surface S 

where A is the unit vector normal to S in the direction of increasing 6. Strictly 
speaking, 4 d  is the total flux of the scalar 6 across an isoscalar surface, i.e. the 
diascalar flux, expressed per unit cross-sectional area, normalized by the area A. In a 
turbulent flow As,  the surface area of S, will be much larger than A. 

We define the rate of diffusive mixing in terms of 4 d ,  which quantifies the diffusive 
scalar flux. Its divergence, suitably defined (see §4.1), quantifies the rate of change 
of scalar concentration, or in an oceanographic context, the rate of water mass 
modification. The expression (2) provides an unambiguous definition of the mixing 
rate that does not require any simplifying assumptions about the fluid dynamics. 
As written however, this expression appears to be difficult to evaluate owing to the 
geometrical complexity of instantaneously defined isoscalar surfaces. 

2.2. Advective flux 
An alternative approach is based on Reynolds averaging. In this approach, the scalar 
and velocity fields are decomposed into mean (0) and fluctuating ()’ components as 
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follows : 

To provide an explicit contrast to the previous discussion, we take the averaging 
operator () to be a spatial average over area A. The advective flux across the 
averaging surface is then 

8 = ( 8 )  + 8‘ , u = (u) + u’. ( 3 )  

Obviously, 4d(t)  is not generally equal to q5Jt). The sign of 4a can be either positive 
or negative. The sign of 4 d  is always positive. Diascalar flux (bd results solely from 
molecular diffusion, while 4a can be produced by motions at any scale. For example, 
non-diffusive internal waves can produce a time-oscillating $a with zero mean. Such 
fluctuations are entirely reversible and contribute nothing to 4 d .  

An estimate of the average mixing rate can, however, often be obtained by suffi- 
ciently averaging 4a in space and/or time. Typically, the amount of averaging required 
depends on aspects of the flow at scales much larger than the largest turbulent scales. 
Unfortunately, this may average out variability in the mixing rate that is of interest. 
Clearly, a practical means of estimating 4 d  without having to average would be 
useful. 

3. A simple derivation of the diascalar flux 
We now derive the formal relationship between the diascalar flux per unit area 

and the average square of the scalar gradient. This derivation is geometrical and 
does not account for advective effects. An alternative derivation, including advection, 
is presented in 54.1 and the Appendix. From dimensional considerations, we see 
immediately that in order to obtain a flux given ic and /V0I2, an estimate of the ‘mean’ 
scalar gradient is required. Similarly, if one desires to express the scalar flux in terms 
of a diffusivity the ‘mean’ gradient is again required. In the development that follows, 
a precise specification of the ‘mean’ gradient follows naturally from the analysis. 

In deriving these results, we assume only that the scalar 8 obeys the advection 
diffusion equation (1) and that V u = 0. Consider a fixed volume of fluid V with 
uniform cross-sectional area A. Shown in figure 1 are two isoscalar surfaces S and 
SA defined by 6 and 6’ + do. These surfaces are drawn schematically; the analysis 
that follows refers to two arbitrarily convoluted, multivalued surfaces. Regardless of 
geometrical complexity, the volume of fluid between the surfaces d V is well defined. 

Suppose that diffusive mixing occurs and there is a net flux of 8 across the surfaces 
S and S A .  If the fluxes across the two surfaces do not balance, there is a flux 
divergence. A flux divergence implies that fluid with scalar value between 8 and 
0 + A 0  is being created or lost by diffusive mixing and that AV changes as a result. 
Alternatively, we may choose to define the surfaces such that d V remains constant. 
In this case, a flux divergence changes the values of 8 associated with the surfaces. 
We take this approach. 

To accomplish this we introduce a new coordinate z. that satisfies the following two 
properties: (i) z* has a single, unique value at all points on an isoscalar surface with 
z,(02) < z*(0,)  whenever 62 > 8,; (ii) Idz,I, the magnitude of the difference between 
~ ~ ( 8 )  and z,(6 + do), is equal to A V / A ,  the volume of fluid within the scalar class 
spanned by 8 and 8 + d8 divided by the cross-sectional area A. 

Note that zt is an isoscalar coordinate, expressed in units of length, but that the 
value of 0 corresponding to a given value of z. changes in time. 
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FIGURE 1. Schematic of two isoscalar surfaces in a volume V with cross-sectional area A. Diascalar 
flux changes AV, the volume of fluid between the surfaces S and SA defined by the scalar values 6’ 
and 6’ + A@. 

Referring again to figure 1, the instantaneous flux of 13 across the surface S is given 

( 5 )  

by 

KJ’VO-A dS = rcAs(VO.A),, = A4d 

where OZ. is the average over the surface S ,  where zt maintains a constant value. 
Note that VO A = IV81 since the surface normal is everywhere parallel to the scalar 
gradient and that for nearby isoscalar surfaces IVO1 = A%/An at each point, where An 
is the perpendicular distance between the surfaces (see figure 1). 

As long as z. satisfies the two properties stated, (2) can be rewritten as 

1 ~lV%l~--An A% Az. dS . d - lim - 
- ~ i - 0  AAz, 

Since AAz, = -AV by definition, this expression can be recognized as the volume 
average of -KIV%l(A%/An)(Az,/A%). Taking the limit, i.e. as the nearby surfaces are 
brought arbitrarily close together, we find that 

Equation (7) is the main result of this paper. It states that the instantaneous 
diascalar flux across a given isoscalar surface is proportional to the square of the 
scalar gradient averaged over the given isoscalar surface, times the inverse of the 
scalar gradient with respect to the z,-coordinate. Several features of this equation 
are worth noting. The first is that V% is the physical gradient defined with respect to 
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spatial position. Second, (7) provides a definition of the mean gradient required to 
infer diffusive flux. The appropriate mean gradient is the derivative of 0 with respect 
to the z,-coordinate. Lastly, we note this result is valid for any scalar satisfying (1)  
with V * u = 0. No dynamical assumptions are required. 

The effective diffusivity in turbulent flows is very much larger than molecular. This 
results from the large strains which increase the surface area S ,  the gradients IV01 
and thus q5d. Our result can be interpreted in terms of these effects. Combining (2), 
(7) and (5)  gives the magnification of isoscalar surface area in a turbulent flow: 

We see from figure 1 that 

Since AV = -AAz, = As(An),,, it follows that (An),, = -(A/As)Az,. Therefore, 

showing the average increase in scalar gradient resulting from the increase in isoscalar 
surface area. Substituting this into (8) yields 

The turbulent eddy diffusivity 

is greatly increased relative to the molecular diffusivity when the isoscalar surface 
area As increases relative to A. This is a simple, geometrical interpretation of (7). 

4. The z,-coordinate and the reference state 
In deriving (7) and (12) we made use of two properties of the coordinate zt. In this 

section we display a mathematical definition of z., demonstrate that the two required 
properties are indeed satisfied and give a physical interpretation of the reference state 
O(Z*). 

The field z,(x, t )  is defined by 

z*(x,t) = - 1 H(0(x’ ,  t )  - 0(x, t ) )  dV’ 
A 

where H is the Heaviside step function satisfying 

0, x < o  

1, x > o  

Equation (1  3 )  is a non-local coordinate transformation from three-dimensional space 
x to the one-dimensional space z.. It is easily seen that (i) z . (x~ ,  t )  = z.(x2, t )  for all 
points x1 and x2 on the same isoscalar surface; z. is thus a unique function of the 
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scalar 6. (ii) Az,(x, t )  is the volume of fluid in V with 6’ greater than or equal to e(x, t). 
A(z*(xZ, t) - z.(xl, t)l is equal to the volume of fluid with between the values Q(x1, t )  
and e(x2 , t ) .  Thus z. satisfies the two required properties. Though z* is constant on 
an isoscalar surface, it is a normalized volume coordinate rather than an isoscalar 
coordinate. Diffusive mixing changes both the range of 8 spanned by two z,-surfaces 
as well as the volume of fluid enclosed by two isoscalar surfaces. 

The variable zt has dimensions of length and can be interpreted as an ordering of 
the fluid elements, with z.(xl,t) < z*(x2,t) when f3 (x l , t )  > 6(x2,t). When 8 is taken 
to be fluid density p, p(z,) is the statically stable reference density profile obtained 
by repeatedly exchanging light parcels with heavier ones below. In this case z* can 
be thought of as the vertical coordinate (increasing upward) after the restratifica- 
tion process has been completed. When 6 is taken to be potential temperature, 
e(z.) is the reference temperature profile with zt increasing downward. When 8 is 
independent of density, the direction of increasing z ,  has no physical significance. 
For randomly selected fluid parcels in V ,  z,(e) is proportional to the cumulative 
probability distribution function for 6. 

4.1. The evolution of e(z,) 
The function 6(t,z.) is monotonic in z. at all times t. Given the advection-diffusion 
equation (1)  and V - u  = 0, an expression for the time rate of change of e(t,z.) can be 
developed. The result gives the rate at which water mass transformations occur in V .  
The time derivative is 

where the average ()=. is taken over the set of points x comprising an isoscalar surface 
at time t. It is shown in the Appendix that 

and 

( $ ) z *  = -f f H( 6(x, t) - e(d, t) )u .  2 dS 

where x’ is any point on the isoscalar surface corresponding to z*. Thus 

This second result extends (7) by relating the diascalar flux & to the time rate of 
change of the reference state in open systems. Equation (17) shows that the reference 
state e( t ,z , )  evolves in time due to both diffusion across isoscalar surfaces and to 
advection of fluid into V and/or AV (see figure 1). For closed systems u 2 = 0 and 
6(t,z.) changes only due to diffusion or diascalar mixing. The coordinate z* provides 
a reference frame in which the scalar fluxes associated with irreversible diascalar 
mixing are particularly simple. 

4.2. Available potential energy 

For 6 = p the reference state p(z.) is closely related to the concept of available 
potential energy. As discussed in Winters et al. (1995) (hereafter referred to as 
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WLRD95), the potential energy associated with p(t, z*),  
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is the minimum potential energy attainable through adiabatic restratification of the 
fluid. Here g is the gravitational acceleration. We call this the background potential 
energy E b .  The difference between the total potential energy 

Ep = g 1 zpb,  t )  d v  (19) 

and the background potential energy is the amount of energy released if complete 
adiabatic restratification were to occur. This is known as the available potential 
energy E,. WLRD95 show that the transfer rate between kinetic energy and E,  is 
measured by the advective flux g Jv wpdV. This exchange is reversible and motions at 
all scales may contribute. WLRD95 also show that the rate at which diffusive mixing 
increases the background potential energy is g J bd dV. This transfer is irreversible; 
mixing always increases Eb. 

5. Diascalar mixing in the ocean thermocline 
The theoretical basis for microstructure measurements of mixing in the stably 

stratified ocean thermocline is the Osborn-Cox (1972) model. This model is based 
on an analysis of the evolution equation for scalar variance. Our presentation of the 
Osborn-Cox (1972) model follows that of Gregg (1987). 

The analysis begins by decomposing the scalar and velocity fields into mean (0) 
and fluctuating ()’ components as in (3) and assuming that (6’) = ( J )  = 0. Using 
this decomposition, an equation for the temporal evolution of scalar variance can be 
obtained from (1): 

(20) 

The physical interpretation of this equation and the numerical balance between terms 
depends not only on the underlying fluid dynamics but also on the averaging or 
filtering scheme () used to separate the mean from the fluctuating fields. 

To assess the rate of turbulent mixing in the ocean thermocline, Osborn & Cox 
(1972) took () as a volume average and argued that the principal balance in (20) was 
between downgradient transport and variance dissipation as given by 

Z(a, 1 + (.) - v)(e’2) + (.’el) v(e) + ;v (.w2) = +w2e’). 

Equation (21) relates scalar gradients, which can be measured using microstructure 
profilers, to an average advective flux. The relationship is approximate (see Gregg 
1987; Davis 1994b; Holloway 1989). 

While the right-hand sides of (21) and (7) are similar in form, they are not identical. 
Equation (7 )  is formulated on isoscalar surfaces while (21) is formulated in spatial 
coordinates. In (7), the quantity JVOI2 is averaged over isoscalar surfaces and the 
mean gradient is obtained from O(z,). This ensures that the right-hand side of (7) 
is always positive. In contrast, (21) requires that IV8I2 and the mean gradient be 
averaged at fixed depths. Note that (21) can be of either sign since dO/dz is not, in 
general, of known sign. 
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FIGURE 2. (a) Schematic of an isotropic, spatially homogeneous turbulent flow. Inset depicts the 
heat flux from warm to cold fluid at small scale. The advective flux across an arbitrarily oriented 
plane S and spatially defined mean gradients are equal to zero. ( b )  The reference temperature T(z.) 
increases monotonically and has a well-defined gradient. 

The Osborn-Cox (1972) model is an approximate balance between advective and 
diffusive terms. This model has recently been re-examined by Davis (1994b) who 
argues on the basis of scaling arguments that it is difficult to justify the use of (21) 
for deducing fluxes appropriate for the oceanic general circulation. Taking 8 = p, 
WLRD95 showed that for closed systems, advective and diffusive fluxes balance, i.e. 

J Y W  dV = J 4 d  dV, 

if and only if the time rate of change of available potential energy E,  is equal to zero. 
A similar result without an energetic interpretation holds for arbitrary scalars 8. In 
this special case (21) and (7) give the same volume-integrated result. 

6. Isotropic turbulence 
In some circumstances 4 d  and 4, measure very different quantities. We now 

consider a flow in which the rate of fluid mixing is given by 4 d  but not by 4,. 
Consider a volume of fluid with uniformly distributed temperature fluctuations T’. 
Let the motion be specified by a spatially homogeneous, isotropic velocity field u‘. 
Figure 2a is a schematic of such a flow. 

Let S denote an arbitrarily oriented plane with area A.  There is no preferred 
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direction to the flow, so the advective heat flux vanishes, i.e. 

T'u' - A dS = 0. (23) .I 
Similarly, the mean temperature gradient in any direction is zero because the average 
temperature on S is equal to that on all nearby surfaces. The Osborn-Cox flux 
(see (21))  is not defined. For this flow, the temperature variance equation is not 
well approximated by (21). Rather, the primary balance is the decay of temperature 
fluctuations by diffusion : 

i3,(Tf2) = -2K(IVT'12) . (24) 
Of course, this does not imply that no mixing occurs. Regions of hot and cold fluid 

exist at small scale and heat flows from the hot regions to the cold ones, warming 
the cold fluid and cooling the hot fluid. 4 d  is the normalized integral of these fluxes 
over the highly convoluted and multiply connected isotherms. The reference profile 
T ( z , )  is well defined as shown schematically in figure 2b. Recall that z*(T2) - z,(Tl) 
is proportional to the volume of fluid with TI  < T < T2. The reference profile is 
linear if the temperature fluctuations are uniformly distributed. The squared gradient 
IVTI2 is strictly positive whereas the inverse gradient of the reference state dz,/dT is 
strictly negative as long as there are temperature fluctuations in the fluid. Thus, 4 d  is 
always positive and measures the rate at which hot and cold fluid mix to form warm 
fluid. 

7. A recipe for estimating $d from profile data 
As written, (7) and (21) require total knowledge of the 8-field. Although this is fine 

for direct numerical simulations, microstructure data are often obtained in oceans 
and lakes along vertical profiles. We now give a recipe for processing such data, 
which converges to 4 d  as the number of profiles increases. We assume that N profiles 
are obtained from throughout the volume V .  As N becomes large, we assume that I/ 
becomes well sampled. We do not explicitly address sampling or instrumental issues 
here. 

Let each profile be measured at equally spaced depths zj ,  spanning the range zo to 
z l ,  for j = 1,2, ... M with z" > z" for m > n. Let Qi(zj)  and JV812i(zj) for i = 1,2, ... N 
be the measurements at these depths. The N-profile estimate 4 d N ( Q )  of the diascalar 
flux across the isoscalar surface 8 is obtained as follows. 

(i) Sort each profile in descending 8 order. Both 8 and IVQI2 are to be sorted 
together. This step converts the set of profiles Oi(zj) and IV812i(zj) to Oi(zTj) and 
(V012i(zTj) where zTJ  is the set of equally spaced sorted depths. The profiles Oi(zTj) 
increase monotonically with depth. The procedure here is commonly known as 
'Thorpe sorting' after Thorpe (1977). 

(ii) The uniformly sampled profiles Oi(zTj) and JV012i(zTj) can also be thought of 
as non-uniformly sampled profiles zTi(8j)  and IV812i(8j). Interpolate these data onto 
a set of equally spaced scalar values. 

(iii) Form isoscalar averages : 
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. N  

( z T ) N ( 9 j )  = ; C Z T i ( B j ) .  

i= 1 

Note that in the limit N + co, ( z ~ ) ~ ( 9 )  -+ z,(9) and (IVOl')" converges to the 
isoscalar average of (V6/'. 

(iv) Compute the N-profile estimate of the reference state gradient (dz./dB)N by 
computing the discrete derivative of ( z ~ ) ~ ( O ) .  

(v) The N-profile estimate of the diascalar flux across the isoscalar surface 9J is 
given by 

In the limit that N profiles densely sample the fluid at a fixed time, this procedure 
yields the exact result (7) for each isoscalar surface sampled. The analysis presented 
here provides a formal justification of the common practice of Thorpe-sorting scalar 
profiles to obtain stable mean gradients (Thorpe 1977; Dillon & Park 1987) with the 
additional steps (ii) and (iii) of isoscalar averaging. 

Of course in practice, one can sample neither densely nor synoptically. Estimation 
errors resulting from sampling will depend on instrument response and resolution, 
the degree of isotropy of small-scale gradients, the spatial distribution of turbulent 
mixing, and the interpolation and differentiation schemes employed. An analysis 
of sampling and instrumentation errors is beyond the intended scope of this paper. 
However, the problems are common to both our procedure and that of Osborn-Cox 
(1972). Often, isoscalar averages converge faster than depth averages as they filter out 
variability due to internal waves and other adiabatic motions. We therefore expect 
that (7) will converge more rapidly than (21). 

8. Direct numerical simulations 
We now illustrate the application of these ideas to calculating mixing rates in direct 

numerical simulations. Using (7), (13) and (14), the time history and the instantaneous 
rate of change of the reference state can be determined. This procedure is easily 
carried out using standard sorting algorithms and can be performed independent of 
the magnitude and/or sign of reversible advective fluxes. We calculate the diapycnal 
flux $d associated with a low-Reynolds-number, shear-driven mixing layer. Based 
on the initial vorticity thickness of the layer, the Reynolds, Prandtl and Richardson 
numbers of the simulation are 600, 1, and 0.167 respectively. The details of numerical 
simulation and a discussion of the energetics, emphasizing the evolution of available 
and background potential energy, are given in WLRD95. 

Figure 3 shows a time sequence of isopycnals in a fixed vertical plane for a shear 
layer initially located at mid-depth. By t = 2 (all times in buoyancy periods) a 
shear instability has reached finite amplitude. The classic core and braid structures 
associated with stratified shear instabilities (see Koop & Browand 1979) are readily 
apparent in the figure. The finite-amplitude billows are significantly distorted by 
t = 4 and by t = 7 the perturbed flow is nearly quiescent. The cumulative effect of 
diapycnal mixing results in a substantially reduced density gradient. 

Figure 4 shows the evolution of p(t,z,), the reference state. Transformation of the 
density field from x to z* converts a complicated three-dimensional field to a simple 
one-dimensional profile at each time. There is a clear physical interpretation of this 
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FIGURE 3. Dimensionless density contours in a single vertical plane from the numerical simulation 
of WLRD95. The density field evolves from an initially undisturbed state. A finite-amplitude 
shear instability distorts the isopycnals, enhancing diffusive mixing. By t = 7 buoyancy periods, 
vertical displaccmcnts of the isopycnals arc slight and diapycnal mixing has substantially rcduccd 
the vertical density gradient of the layer. 

state. Because boundary fluxes are zero in this simulation, changes in p(t,z.) arise 
solely from diapycnal mixing as given by (17). In the absence of mixing, isopycnals 
would remain flat. As the flow evolves in time, and mixes, these isopycnals spread 
and the volume of fluid between two given isopycnals changes. This change is given 
by the 2,-gradient of $d. The flux $d can be calculated directly via (7 )  or from 
the rate of spreading of the isopycnals. Shaded contours of $d are shown in the 
figure. They show the mixing rate as a function of time. In this flow, the most 
rapid mixing occurs at about t = 3 after the cores of the Kelvin-Helmholtz billows 
have become well developed but before they collapse. WLRD95 (their figure 4h) 
show that volume averages of 4 d  and denoted by @d and @= respectively in 
WLRD95, become equal when averaged over the lifetime of the mixing event, but 
have very different time histories. At times, the volume-averaged $a is negative, i.e. 
the buoyancy flux is countergradient. Regardless, $ d ,  and thus the mixing rate, is 
always positive. Winters & D’Asaro (1994) analyse a simulation of internal wave 
breaking at a critical level and show that, for this flow, nearly all the mixing occurs 
while do is countergradient. 

9. Discussion 
We believe that the analyses presented here and in WLRD95 provide a frame- 

work for diagnosing mixing rates and for separating diffusive and advective pro- 
cesses for a broad range of fluid flows. By not defining mixing in terms of a 
Reynolds-averaged flux, it is readily apparent that mixing can occur even if these 
fluxes are countergradient. By not requiring specific balances in the scalar vari- 
ance equation, these techniques can be used to infer mixing rates for flows which 
are unsteady, inhomogeneous and/or strongly advective. For example, in an oceano- 
graphic context the rate of water mass transformation in unsteady intrusions or nearly 
well-mixed layers can be estimated from microstructure measurements. For density- 
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FIGURE 4. Contours of the reference state p(t,z,), the state of minimal potential energy attainable 
through adiabatic redistribution of fluid elements. The time rate of change of the reference state is 
completely determined by the diapycnal flux 4 d ,  shown in shaded contours. 

stratified flows, this analysis extends the concept of available potential energy to open 
systems. 

Our analysis assumes incompressible or Boussinesq flow. Thus, volume is conserved 
in the transformation defining the reference state O(t ,  z*).  To extend this framework 
to compressible fluids, a new transformation that conserves mass rather than volume 
is needed. Since the ocean and atmosphere are only approximately Boussinesq, such 
an extension is probably necessary to make this analysis exact for large-scale flows in 
the ocean and atmosphere. 
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Appendix A 
It remains to be shown that 
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and that 

( $ ) z ,  = - f H (  6(x, t )  - 6(x’, t )  )u - f i  dS 
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(A 2) 

where OZr indicates averaging over the isoscalar surface 6’(z,). 

A.l. 
To show (A l), we let K ( V ~ ~ ) , ,  = -(d/dz*)B and show that B(t,z,) = $d .  From (A 1) 

B(t, z,) = - K  (V26),(t, z:) dz:. L2* 
Let zo and z1 be the z* values corresponding to two isoscalar surfaces and let AV be 
the volume of fluid between these two surfaces. Define 9 as the volume average of 
B in AV: 

Y - -  - tv 6’ B dz, . 

Noting that Vz, = (dz./d6)V6 and integrating by parts, we find that 

As the two surfaces are brought together, i.e. in the limit that zo and z1 approach the 
same value z*, the first two terms on the right of (A5) vanish. The third term survives 
and takes the value -(d~,/d6)(lV61~),.. Thus 

and (A 1) is established. 

A.2. 
We now show (A 2). Let x’ be a Lagrangian label that uniquely specifies a single fluid 
element. Here we take x’ to be the position of a given element at some time t. Let 6’ 
be the scalar value associated with the x’ element at time t. The time rate of change 
of z.(x’, t )  can be obtained by differentiating (13). We obtain 

:I 

Il(x’,  t )  = 1 6 (  6(x, t )  - 6(x’, t )  ) {V20(x, t )  - V26(x’, t ) }  dV 

d l  -z.(x , t )  = - 6( 6(x, t )  - 6(x’, t )  ) { -u - V6’ + rcV26’(x, t )  - d26(x’,  t ) }  dV, (A 7) 

where 6(x -a )  is the Dirac delta function. For convenience, we rewrite this expression 
as the sum of two integrals, 11 and 12, where 

dt 

(A 8) 

and 

1 2 ( ~ ’ ,  t )  = -- 6( O(x, t )  - 6(x’, t )  ) {U VO} dV. (A 9) :s, 
A.2.1. ( Z 1 ) 2 ,  

We now show that the isopycnal average of 11,  i.e. the average over the set of labels 
corresponding to the fluid elements defining an isoscalar surface at time t ,  is equal 
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to zero. Let J = (d(x,y,z))/(d(O,p,q)) be the Jacobian of the transformation from 
(x, y, z )  to (8, p ,  4). Il can be written as 

= i / / / q  8 - 0 ’  {v2~(8,p,g)-v2e(e’,p’,q’)}J(~,p,q)dedpd~. ( ~ 1 0 )  

Integrating with respect to 8 gives 

11 = / / V 2 W ’ ,  P ,  q)J(O’, P ,  4 )  dP dq - V2QB’, P’, 4’) / / J@’, P,  4 )  dP d4 3 (A 11) 

The sum of contributions from all points x’ on the 8’ isoscalar surface is obtained by 
integrating the expression 

J 11 J@’, P’, 4’) dp‘dq’ . 

This gives 

which can be reduced to 

/ / I l J ( 8 ’ , P ‘ , q ‘ )  dP‘d4’ 

= 0. 

Thus, (Il),,  = 0. 

A.2.2. (Z2)2. 

Now consider 1 2 .  Since 

(A9) can be written as 

For incompressible flows V - u = 0 and so u - VH = V Hu. Equation (A 16) can thus 
be rewritten as a surface integral, 

l 2 ( X r ,  t )  = -- H( qX, t )  - qx’, t )  )u - A ds, (A 17) :f 
where S is the surface enclosing the volume V and A is the outward facing unit vector 
normal to S. Note that 12(xi’, t )  = 12(xj’, t )  as long as the labels xi’ and xj’ correspond 
to elements on the same isoscalar surface. Thus, I ~ ( x ’ , t )  is equal to the isopycnally 
averaged value. The value of I 2  at time t is thus uniquely determined by specifying a 
scalar value 8 or the corresponding value z.(O). Since (dz./dt),. = (11)~. + (I*),. and 
(11)~. = 0, (A2) is established. 
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